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Abstract
Faced with skyrocketing costs for developing new
drugs from scratch, repurposing existing drugs
for new uses is an enticing alternative that con-
siderably reduces safety risks and development
costs. However, successful drug repurposing has
been mainly based on serendipitous discoveries.
Here, we present a tool that combines a graph
transformer network with interactive visual expla-
nations to assist scientists in generating, exploring,
and understanding drug repurposing predictions.
Leveraging semantic attention in our graph trans-
former network, our tool introduces a novel way
to visualize meta path explanations that provide
biomedical context for interpretation. Our results
show that the tool generates accurate drug predic-
tions and provides interpretable predictions.

1. Introduction
Developing a new drug to treat a disease, moving the drug
forward through clinical trials, and obtaining approval for
it is a long, expensive process with a high risk of failure.
It currently takes 13-15 years and US $2B to $3B on av-
erage (Pushpakom et al., 2019) to get a novel drug to the
market, and the costs are going up (Nosengo, 2016). Instead
of developing a new drug from scratch, drug repurposing
aims to identify therapeutic opportunities of existing drugs
that already passed clinical testing, therefore significantly
reducing the safety risks and the development cost (Gysi
et al., 2021). Because most repurposed drugs have already
passed the early phases of development and clinical test-
ing (Ashburn & Thor, 2004), they can potentially get to
market in less than half the time and at one-quarter of the
cost needed to develop a new drug from scratch (Nosengo,
2016). However, despite considerable advances (Frantzi
et al., 2020), drug repurposing remains an open problem
driven by serendipitous discoveries.
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Graph neural networks (GNNs) have emerged as a promis-
ing approach for drug development and demonstrated the
ability to identify promising therapeutic opportunities with
unprecedented speed, scale, and accuracy (Li et al., 2021).
However, critical challenges remain. (1) The underlying
GNN models remain elusive to interpretation by domain ex-
perts. Typical GNN models are built by specialists, and end-
point users (e.g., wet lab biologists and physicians) cannot
directly engage with the model. How can we enable users to
provide feedback on model development and build trust in
ML predictions by asking what-if questions and receiving ac-
curate predictions that can be interpreted meaningfully? (2)
Biomedical data involve rich multimodal and heterogeneous
interactions of many different types, including experimental
readouts, curated annotations, and metadata—no single data
modality can capture all the factors necessary to identify a
successful drug treatment (Zitnik et al., 2019).

Explainability has an important role in addressing the above
challenges. However, existing GNN explainers (e.g., Ying
et al.; Schlichtkrull et al.; Huang et al.; Vu & Thai), while re-
markably powerful, produce explanations that are either too
vague or that do not lend themselves to testable biomedical
hypotheses. For example, GNNExplainer (Ying et al., 2019)
identifies a locally informative subgraph and a subset of
node feature dimensions to explain a given GNN prediction.
But when applying GNNExplainer to drug repurposing, it
remains unclear how to connect these explanations to dis-
ease treatment mechanisms. To successfully apply GNNs
for drug repurposing, it is crucial to provide explanations
that can be easily interpreted by scientists in the context of
drug development.

Here, we provide interactive visual explanations that reflect
biological mechanisms to assist GNN-based drug repurpos-
ing. To this end, we construct a drug repurposing knowledge
graph consisting of a variety of molecular interaction data,
gene expression data, clinical trials, and drug treatments.
We then develop a heterogeneous graph attention message
passing GNN architecture and use it with the knowledge
graph to make drug repurposing predictions (i.e., indica-
tions, contra-indications, or off-label use).

Our key contribution is a novel interactive visualization
that provides explanations that can reflect biological mecha-
nisms and be interpreted meaningfully in the context of drug
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repurposing. Preliminary results show the approach can ac-
curately predict treatments for molecularly uncharacterized
diseases and provide visual explanations that faithfully cap-
ture known biological mechanisms. A web demo is available
at http://drugexplorer.gehlenborglab.org.

2. Desiderata: Explainable Deep Repurposing
To guarantee safe and effective applications, predictions
should enable meaningful interpretation by end-users in
the intended use cases (i.e., a user-centric view) and be
actionable from a biomedical perspective (i.e., a domain-
specific view).

A user-centric view requires careful consideration about
how the explanations are presented to and utilized by the
end users. The machine learning expertise of the end users
will significantly influence the manner in which the explana-
tions are interpreted. The interpretation should lead to clear
actionable insights rather than a hunch.

A domain-specific view requires explanations that reflect
biological mechanisms of drug action (e.g., Van Maanen
et al.; Gonçalves et al.; Lin et al.). These domain-specific
explanations can work as an effective way to evaluate the
trustworthiness of a prediction, especially when the ground
truth of the prediction is unavailable or when the assess-
ment of the prediction requires downstream studies (e.g.,
clinical studies). Meanwhile, considering our incomplete
understanding of molecular pathology and drug actions, ex-
plainable deep learning bears the potential to augment our
understanding of drugs and maximize the yield of follow-up
studies.

3. Heterogeneous Graph Attention Approach
3.1. Molecular Data and Knowledge Graph

We processed a variety of molecular interaction data, in-
cluding the human interactome assembled from 21 public
databases of protein-protein interactions, gene expression
data, clinical trials, and information on drug indications,
contra-indications, and off-label use across the entire range
of 22K+ human diseases and 7K+ drugs. We integrated
these data into a knowledge graph of heterogeneous entities
and their relations, as shown in Table 1. We have 10 types
of nodes and 32 types of relations. Note that a pair of node
types can have multiple relation types. For example, the
relation between a drug node and a protein node can be
either carrier, enzyme, target, or transporter.

3.2. Drug-Disease Link Prediction

We treat drug repurposing as a link prediction task defined
on a knowledge graph. Given drug i and disease j, we aim
to predict the type of a relation r(eij) ∈ Rdrug,disease, where

Node type Count Node type Count
gene/protein 27,576 biological process 28,110

disease 20,761 phenotype 13,631
anatomy 8,601 molecular function 10,207

drug 7,420 cellular component 3,887
pathway 2,427 exposure 1,336

total 125,956

Table 1. Statistics about the knowledge graph.

Rdrug,disease ={indication, contra-indication, off-label use}.

In order to infer the missing links (i.e., unknown drug-
disease relations) from the heterogeneous knowledge graph,
we developed a heterogeneous version of the graph atten-
tion neural network (Veličković et al., 2018). This model
overcomes the limitation of most existing GNN models that
can only learn from fixed and homogeneous graphs.

Meanwhile, this model provides a semantic attention mecha-
nism that enables a node to learn the importance of different
neighbors based on the type of their relations. More specif-
ically, the model learns relation-specified weights for the
32 relation types in the knowledge graph. For a node i at
layer l, its embedding h
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matrices W(l)
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Probability of a relation r ∈ Rdrug,disease between a drug
i and a disease j is then calculated as: pi,j,r = 1/(1 +
exp(−sum(hi ∗wr ∗hj))). Once the model is trained, ei,j
indicates the relevance of drug i for disease j.

4. Interactive Visual Explanations
4.1. Visual Explanations from Two Perspectives

We developed an interaction visualization tool to help end
users interact with the GNN model and understand the pre-
dicted drug indications (Figure 1). Users can search and
select a disease of interest in the control panel (Figure 1a).
The tool will then predict possible drug indications for the
selected disease and visualize the explanations of these pre-
dictions (Figure 1b-d). For each predicted drug indication,
our tool constructs and visualizes two kinds of explanations:
a model-level explanation and a human-level explanation.

Model-level explanations reveal how the model makes a
certain prediction. In GNN-based drug repurposing, the
model-level explanation includes node embedding, relation-
based edge attentions, and subgraphs that are important for
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Figure 1. Interface of our system for interactive visual explanation of drug repurposing predictions.

the prediction.

In contrast, human-level explanations mimic how an ex-
pert in the application domain would reason about a pre-
diction. In drug repurposing, the human-level explanation
can be presented as semantic paths in the knowledge graph
that reflect biomedical mechanisms. For example, Riton-
avir is a drug originally developed for treatment of AIDS.
The indication of Ritonavir for the disease ALS can be
explained by a Ritonavir-NR1|2-ALS path: Ritonavir tar-
gets the gene NR1|2 which is implied in ALS. This drug-
gene-disease meta-path provides a domain-meaningful and
human-readable explanation, assisting researchers in assess-
ing the predicted drug candidates and conducting necessary
follow-up clinical studies. However, there can be more than
ten thousand paths between a drug and a disease node in the
knowledge graph. The relation-specified attention can help
users effectively identify the important and semantic paths.

4.2. Model-Level Explanations

A model-level explanation is represented using two views:
a Node Embedding view (Figure 1c) and a Node Attention
view (Figure 1d). In the Node Embedding view, we use
t-SNE (Van der Maaten & Hinton, 2008) to present the
learned embedding of all drug nodes in the knowledge graph
and highlight the predicted drugs for the selected disease.
This visualization can help users obtain an overview of the
predicted drugs, e.g., the semantic similarity between the
predicted drugs, the diversity of the drug prediction. In the
Node Attention view, we use a tree visualization to present
the edge attention and the subgraph structure in message
passing. The node color indicates the type of nodes, the

edge thickness indicates the attention weights, and the tree
structure reflects the message passing. Considering that a
node can have thousands of neighbors and most neighbors
make little contribution to the prediction, we only show the
top-k neighbors with the highest attention weights, where
k = 20/(2n) for n-hop neighbors.

4.3. Human-Level Explanations

For human-level explanations (meta paths in this case), we
design a novel yet intuitive visualization for end users.

We present meta-path explanations for top-k drug predic-
tions for a selected disease, as shown in Figure 1b. The rows
with round nodes represent meta paths, while the rows with
rectangle nodes represent individual explanation paths that
belong to a certain meta path. The matrix on the left side
summarizes the number of explanation paths for each drug
(column) that belong to different meta paths (rows). Users
can select a drug and expand all the explanation paths for
the selected drug. This visualization effectively summarizes
the predicted drugs in terms of a meta path and facilitates
the comparison between predicted drugs, especially when
their predictions scores are similar.

5. Results
5.1. Performance of Drug Repurposing Predictor

We report here recall scores obtained by the heterogeneous
graph attention model on a randomly split dataset of drug-
disease relationships. Note that our results focus on demon-
strating visual explanations; benchmarking results of the
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Figure 2. Exploring drug repurposing predictions for the treatment of Alzheimer’s Disease.

predictor are not shown due to page limit. We consider
disease-centric evaluation: for each disease in the test set,
we pair it with the full list of drugs and remove those from
the training set. This list is fed to the model to output a
score for each drug. We use the scores to produce a ranked
list of drugs for each disease. Since only a small number
of drugs are available for each disease, we calculate model
performance using recall@K%, i.e., how many drugs from
the test set (i.e., hits) are found in the top K% of the ranked
list. We aggregate the recall across diseases. Table 2 show
the model can accurately predict drug-disease relationships
ranking 53.9% of hits in top 1%, 79.5% of hits in top 5%,
and 88.9% of hits in top 10%.

5.2. Case Studies for Visual Explanations

We conduct a case study into treatments for Alzheimer’s
Disease (AD). The GNN model was trained on the full
knowledge graph and used to make predictions for drugs,
which were not included in the knowledge graph. We se-
lected AD in the visualization tool and explored predicted
drugs and their explanations.

The tool automatically produced predictions and updated
visualizations for AD (Figure 2). Predicted drugs were
scattered in the Node Embedding view, indicating that the
GNN model produced predictions for a diverse set of drugs.

We first examined the largest cluster of drugs (Figure 2.A1).
This cluster included drugs such as Glyburide, Repaglinide,
Tolbutamide, and Metformin, used to treat Type 2 diabetes
(T2D). Drugs found in the cluster were consistent with cur-
rent scientific understanding of the connections between
cognitive impairment and T2D (Sastre et al., 2017). Previ-
ous studies have found that the use of antidiabetic treatments
among individuals with T2D could mitigate risk for demen-
tia (Akimoto et al., 2020).

recall@ indication contra-indication off-label use
1% 0.539±0.463 0.339±0.379 0.393±0.379
5% 0.795±0.378 0.615±0.407 0.618±0.476
10% 0.888±0.297 0.759±0.359 0.770±0.412

Table 2. Disease-centric evaluation. Higher values are better.

We then examined explanations for predicted antidiabetic
drugs in the Meta Paths view. To this end, we first selected
Repaglinide in the Meta Paths view to show a detailed ex-
planation. The shortest meta path is Disease-Gene/Protein-
Drug. The explanation path below that meta path (Fig-
ure 2.A2) showed that Repaglinide targets protein PPARG,
which, in turn, is associated with AD. Based Disease-Gene
/Protein-Drug-Gene/Protein-Disease meta path (A3), we
see that drug Repaglinide was predicted partly because it
has the same target protein as Ibuprofen. Ibuprofen targets
proteins that are associated with AD and can delay some
forms of AD pathology (Lim et al., 2000). Similar instances
of meta paths existed in explanations of other antidiabetic
drugs, including Nateglinide and Tolbutamide.

Another cluster (Figure 2.B1) in the Node Embedding view
comprised of anticholinergic drugs, including Levodopa,
Pergolide, and Orphenadrine, which are used to manage
Parkinson’s disease. The Meta Paths view showed expla-
nations for those predictions. By examining explanation
paths, we found that a target protein of Pergolide inter-
acts with multiple AD-associated proteins through shared
cellular phenotypes (B2), an observation consistent with
the reported associations between AD and anti-Parkinson’s
agents (Ono et al., 2006). While some studies (Joung et al.,
2019) reported the contraindication of these drugs, the con-
traindication still reflected the GNN’s ability to identify
associations unknown in the training graph. This example
also highlighted the utility of visual explanations to perform
error analysis and identify possible inaccurate predictions.

6. Conclusion and Future Directions
We developed a tool that provides interactive visual explana-
tions for GNN-based drug repurposing predictions. Results
show that this tool can effectively identify promising re-
purposing opportunities and explain predicted drug uses,
highlighting the benefits of user-centric and domain-specific
visual explanations. Moving forward, we plan to carry out
user studies with scientists to systematically evaluate the
explainability and usability of the visualization tool.
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